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Summary of CNN architecture development in 2015
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Evolution of ResNets

VGG-19 (2014) - “very deep convolutional neural network”
One of the most important outcomes of 2015: Residual Networks [1]
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Main idea of a ResNet

Adding residual connections helps with degradation problem [2]
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Figure 5. A deeper residual function F for ImageNet. Left: a
building block (on 5656 feature maps) as in Fig. 3 for ResNet-
34. Right: a “bottleneck” building block for ResNet-50/101/152.




Summary of CNN architecture development in 2016
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Inception-v4, Inception-ResNet and the Impact of
Residual Connections on Learning (23 Feb 2016)

Inception ResNet > Inception v4 > Inception v3 [3]
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Figure 4. The schema for 35 x 35 grid modules of the pure
Inception-v4 network. This is the Inception-A block of Figure 9. .




Resnet in Resnet: Generalizing Residual
Architectures (25 Mar 2016)

Generalized residual architecture that combines residual networks and
standard convolutional networks in parallel [4]
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Figure 1: (a) 2-layer ResNet block. (b) 2 generalized residual blocks (ResNet Init). (c) 2-layer
ResNet block from 2 generalized residual blocks (grayed out connections are 0). (d) 2-layer RiR

block.




Deep Networks with Stochastic Depth
(30 Mar 2016)

for each mini-batch, randomly drop a subset of layers - more than 1200 layers [5]

Fig. 2. The linear decay of pr illustrated on a ResNet with stochastic depth for po=1
and pr. = 0.5. Conceptually, we treat the input to the first ResBlock as Hp, which is
always active.




|dentity Mappings in Deep Residual Networks
(12 Apr 2016)

Relocation of ReLU/BN [6]
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Figure 1. Left: (a) original Residual Unit in [1]; (b) proposed Residual Unit. The grey
arrows indicate the easiest paths for the information to propagate, corresponding to
the additive term “x;” in Eqn.(4) (forward propagation) and the additive term “1” in
Eqn.(5) (backward propagation). Right: training curves on CIFAR-10 of 1001-layer
ResNets. Solid lines denote test error (y-axis on the right), and dashed lines denote
training loss (y-axis on the left). The proposed unit makes ResNet-1001 easier to train. 10




Residual Networks are Exponential Ensembles of
Relatively Shallow Networks (20 May 2016)

Describes “multiplicity” of ResNets and shows that removing layers leads to
smooth increase in error rates [7]

(a) Conventional 3-block residual network (b) Unraveled view of (a)

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of
Equation (1). When we expand this formulation to Equation (6), we obtain an unraveled view of
a 3-block residual network (b). From this view, it is apparent that residual networks have O(2")
implicit paths connecting input and output and that adding a block doubles the number of paths.
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Wide Residual Networks (23 May 2016)

Decrease depth and increase width: new SOTA on on CIFAR-10, CIFAR-100 and
SVHN [8]

group name | output size | block type = B(3,3)
convl 3232 ] [3x3, 16]_
3x3, 16xk
conv2 32x32 _ 33, 16xk _ xN
[ 3x3,32xk |
conv3 16x16 _ 33, 32xk : xN
| 3x3, 64xk |
conv4 8x8 _ 3x3. 64xk _ x N
avg-pool o [8 x 8]

Table 1: Structure of wide residual networks. Network width is determined by factor k.
Original architecture [[Il] is equivalent to k = 1. Groups of convolutions are shown in brack-
ets where N is a number of blocks in group, downsampling performed by the first layers
in groups conv3 and conv4. Final classification layer is omitted for clearance. In the
particular example shown, the network uses a ResNet block of type B(3,3).
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FractalNet: Ultra-Deep Neural Networks without
Residuals (24 May 2016)

3 Prediction
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Figure 1: Fractal architecture. Lefi: A simple expansion rule generates a fractal architecture with
C intertwined columns. The base case, f; (z), has a single layer of the chosen type (e.g. convolutional)
between input and output. Join layers compute element-wise mean. Right: Deep convolutional
networks periodically reduce spatial resolution via pooling. A fractal version uses f as a building
block between pooling layers. Stacking B such blocks yields a network whose total depth, measured
in terms of convolution layers, is B - 2!, This example has depth 40 (B = 5, C = 4).
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Residual Networks of Residual Networks:
Multilevel Residual Networks (9 Aug 2016)

New SOTA on CIFAR
10/100 and SVHN by
combining wide ResNets
with additional level-wise
shortcut connections [10]

ST

Pre-activation Residual Block

Pre-RoR-3 or RoR-3-WRN

Fig. 3. Pre-RoR-3 and RoR-3-WRN architectures. m=3. The addition is

followed by the ReLU. Projection shortcut is done by 1x1 convolutions. BN-

ReLU-conv order in residual blocks is adopted. If k=1, this is a Pre-RoR-3

architecture, otherwise this is a RoR-3-WRN architecture. There are several 14
direct paths for propagating information created by identity mappings.




Densely Connected Convolutional Networks (25
Aug 2016)

Each layer is directly connected to every other layer in a feed-forward fashion
> R New SOTA on CIFAR 10/100 and SVHN. [11]

Figure 1: A 5-layer dense block with a growth rate of k£ = 4. Each layer takes all preceding feature
maps as input.
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Large Scale Visual Recognition Challenge 2016,
ILSVRC2016 (26 Sep 2016)

- Inception, Inception-Resnet, ResNet & Wide Residual Network (WRN)
- Faster R-CNN
- Ensembling [12]




Xception: Deep Learning with Depthwise Separable
Convolutions (7 Oct 2016)

Replaces Inception
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Deep Pyramidal Residual Networks (10 Oct 2016)

instead of using downsampling increases the width at all the units to involve
as many locations as possible [14]
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Figure 2. Visual illustrations of (a) additive PyramidNet, (b) mul-
tiplicative PyramidNet, and (c) a comparison of (a) and (b). 18
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Generative models in 2016

- VAE [15]
- GAN [16,17]
- PixelRNN & PixelCNN [18,19]
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Autoencoding beyond pixels using a learned
similarity metric (10 Feb 2016)

Combining VAE with a GAN to use learned feature representations in the GAN
discriminator as basis for the VAE reconstruction objective [20]

Figure 5. Using the VAE/GAN model to reconstruct dataset samples with visual attribute vectors added to their latent representations. 20




Texture Networks: Feed-forward Synthesis of
Textures and Stylized Images (10 Mar 2016)

compact feed-forward CNNs to generate multiple samples of the same texture of
arbitrary size to transfer artistic style from a given image to any other image
(100x speed up) [21]

——

Input Gatys et al. Texture nets (ours) Portilla, Simoncelli DCGAN

Figure 4. Further comparison of textures generated with several methods including the original statistics matching method (Portilla &
Simoncelli, 2000) and the DCGAN (Radford et al., 2015) approach. Overall, our method and (Gatys et al., 2015a) provide better results,
our method being hundreds times faster.
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Perceptual Losses for Real-Time Style Transfer and
Super-Resolution (27 Mar 2016)

Suggests 2 perceptual loss functions combining per-pixel loss between the

output and ground-truth images with high-level features [22]
Style Content  Gatys et al [10] Ours

Ground Truth Bicubic SRCNN [11]  Perceptual loss

Fig. 1. Example results for style transfer (top) and x4 super-resolution (bottom). For
style transfer, we achieve similar results as Gatys et al [10] but are three orders of
magnitude faster. For super-resolution our method trained with a perceptual loss is
able to better reconstruct fine details compared to methods trained with per-pixel loss.
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Context Encoders: Feature Learning by Inpainting

(25 Apr 2016 ?lu T ?u] ]
Unsupervised visual m | -”'ll- "'ﬁ ij | ”

feature learning
algorithm driven by
context-based pixel
prediction [23]

Input Context  Context Encoder Content-Aware Fill

Figure 5: Comparison with Content-Aware Fill (Photoshop
feature based on [Z]) on held-out images. Our method
works better in semantic cases (top row) and works slightly
worse in textured settings (bottom row). 23



Photo-Realistic Single Image Super-Resolution

Using a Generative Adversarial Network (15 Sep
2016)

superresolution generative adversarial network (SRGAN) with a perceptual
loss function which consists of an adversarial loss and a content loss [24]

original bicubic SRResNet SRGAN
(21.59dB/0.6423) _ (20.34dB/0.6562)

Figure 2: Illustration of performance of different SR approaches with downsampling factor: 4x. From left to right: original
HR image, bicubic interpolation, deep residual network optimized for MSE, deep residual generative adversarial network 24
optimized for a loss more sensitive to human perception. Corresponding PSNR and SSIM are shown in brackets.




And much, much more...

- SqueezeNet [25] and XNOR-net [26]

- Weight [27] and Layer [28] normalization
- 3D ConvNets [29]

- WaveNet [30]

- etc

25




References

[1] He, Kaiming, et al. Deep Residual Learning. MSRA @ ILSVRC & COCO 2015 competitions.
URL

[2] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint
arXiv:1512.03385 (2015).

[3] Szegedy, Christian, Sergey loffe, and Vincent Vanhoucke. "Inception-v4, inception-resnet
and the impact of residual connections on learning." arXiv preprint arXiv:1602.07261
(2016).

[4] Targ, Sasha, Diogo Almeida, and Kevin Lyman. "Resnet in Resnet: Generalizing Residual
Architectures." arXiv preprint arXiv:1603.08029 (2016).

[5] Huang, Gao, et al. "Deep networks with stochastic depth." arXiv preprint
arXiv:1603.09382 (2016).

[6] He, Kaiming, et al. "ldentity mappings in deep residual networks." arXiv preprint
arXiv:1603.05027 (2016).

[7] Veit, Andreas, Michael Wilber, and Serge Belongie. "Residual Networks are Exponential
Ensembles of Relatively Shallow Networks." arXiv preprint arXiv:1605.06431 (2016).

[8] Zagoruyko, Sergey, and Nikos Komodakis. "Wide Residual Networks." arXiv preprint
arXiv:1605.07146 (2016).

[9] Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich. "FractalNet: Ultra-Deep
Neural Networks without Residuals." arXiv preprint arXiv:1605.07648 (2016).

26


http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf
http://image-net.org/challenges/talks/ilsvrc2015_deep_residual_learning_kaiminghe.pdf

References

[10] Zhang, Ke, et al. "Residual Networks of Residual Networks: Multilevel Residual
Networks." arXiv preprint arXiv:1608.02908 (2016).

[11] Huang, Gao, Zhuang Liu, and Kilian Q. Weinberger. "Densely connected convolutional
networks." arXiv preprint arXiv:1608.06993 (2016).

[12] http://image-net.org/challenges/LSVRC/2016/

[13] Chollet, Francois. "Xception: Deep Learning with Separable Convolutions." arXiv
preprint arXiv:1610.02357 (2016).

[14] Han, Dongyoon, Jiwhan Kim, and Junmo Kim. "Deep Pyramidal Residual Networks."
arXiv preprint arXiv:1610.02915 (2016).

[15] Eslami, S. M., et al. "Attend, Infer, Repeat: Fast Scene Understanding with Generative
Models." arXiv preprint arXiv:1603.08575 (2016).

[16] Salimans, Tim, et al. "Improved techniques for training gans." arXiv preprint
arXiv:1606.03498 (2016).

[17] Zhao, Junbo, Michael Mathieu, and Yann LeCun. "Energy-based Generative Adversarial
Network." arXiv preprint arXiv:1609.03126 (2016).

[18] van den Oord, Aaron, Nal Kalchbrenner, and Koray Kavukcuoglu. "Pixel Recurrent
Neural Networks." arXiv preprint arXiv:1601.06759 (2016).

[19] Oord, Aaron van den, et al. "Conditional image generation with pixelcnn decoders."
arXiv preprint arxiv:1606.05328 (2016).

27



References

[20] Larsen, Anders Boesen Lindbo, Seren Kaae Sgnderby, and Ole Winther. "Autoencoding
beyond pixels using a learned similarity metric." arXiv preprint arXiv:1512.09300 (2015).
[21] Ulyanov, Dmitry, et al. "Texture Networks: Feed-forward Synthesis of Textures and
Stylized Images." arXiv preprint arXiv:1603.03417 (2016).

[22] Johnson, Justin, Alexandre Alahi, and Li Fei-Fei. "Perceptual losses for real-time style
transfer and super-resolution." arXiv preprint arXiv:1603.08155 (2016).

[23] Pathak, Deepak, et al. "Context Encoders: Feature Learning by Inpainting." arXiv
preprint arXiv:1604.07379 (2016).

[24] Ledig, Christian, et al. "Photo-Realistic Single Image Super-Resolution Using a
Generative Adversarial Network." arXiv preprint arXiv:1609.04802 (2016).

[25] landola, Forrest N., et al. "SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and< 1MB model size." arXiv preprint arXiv:1602.07360 (2016).

[26] Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary
Convolutional Neural Networks." arXiv preprint arXiv:1603.05279 (2016).

[27] Salimans, Tim, and Diederik P. Kingma. "Weight Normalization: A Simple
Reparameterization to Accelerate Training of Deep Neural Networks." arXiv preprint
arXiv:1602.07868 (2016).

[28] Ba, Jimmy Lei, Jamie Ryan Kiros, and Geoffrey E. Hinton. "Layer normalization." arXiv
preprint arXiv:1607.06450 (2016).

28



References

[29] Qi, Charles R., et al. "Volumetric and Multi-View CNNs for Object Classification on 3D
Data." arXiv preprint arXiv:1604.03265 (2016).

[30] Oord, Aaron van den, et al. "WaveNet: A generative model for raw audio." arXiv
preprint arXiv:1609.03499 (2016).

29




