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Architectures



Summary of CNN architecture development in 2015
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Evolution of ResNets
VGG-19 (2014) – “very deep convolutional neural network”
One of the most important outcomes of 2015: Residual Networks [1]
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Main idea of a ResNet
Adding residual connections helps with degradation problem [2]
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Summary of CNN architecture development in 2016
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Inception-v4, Inception-ResNet and the Impact of 
Residual Connections on Learning (23 Feb 2016)
Inception ResNet > Inception v4 > Inception v3 [3]
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Resnet in Resnet: Generalizing Residual 
Architectures (25 Mar 2016)
Generalized residual architecture that combines residual networks and 
standard convolutional networks in parallel [4]

residual and non-residual streams.

8



Deep Networks with Stochastic Depth
(30 Mar 2016)

for each mini-batch, randomly drop a subset of layers – more than 1200 layers [5]
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Identity Mappings in Deep Residual Networks
(12 Apr 2016)
Relocation of ReLU/BN [6]
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Residual Networks are Exponential Ensembles of 
Relatively Shallow Networks (20 May 2016)
Describes “multiplicity” of ResNets and shows that removing layers leads to 
smooth increase in error rates [7]
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Wide Residual Networks (23 May 2016)
Decrease depth and increase width: new SOTA on on CIFAR-10, CIFAR-100 and 
SVHN [8]

12



FractalNet: Ultra-Deep Neural Networks without 
Residuals (24 May 2016)
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Residual Networks of Residual Networks:
Multilevel Residual Networks (9 Aug 2016)

New SOTA on CIFAR 
10/100 and SVHN by 
combining wide ResNets 
with additional level-wise 
shortcut connections [10]

14



Densely Connected Convolutional Networks (25 
Aug 2016)
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Each layer is directly connected to every other layer in a feed-forward fashion                                           
New SOTA on CIFAR 10/100 and SVHN. [11]



 Large Scale Visual Recognition Challenge 2016, 
ILSVRC2016 (26 Sep 2016)

- Inception, Inception-Resnet, ResNet & Wide Residual Network (WRN)
- Faster R-CNN
- Ensembling [12]
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Xception: Deep Learning with Depthwise Separable 
Convolutions (7 Oct 2016)

Replaces Inception 
modules with 
depthwise 
separable 
convolutions.

Outperforms V3 
with the same # of 
parameters [13]
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Deep Pyramidal Residual Networks (10 Oct 2016)

instead of using downsampling increases the width at all the units to involve 
as many locations as possible [14]
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Generative models in 2016

- VAE [15]
- GAN [16,17]
- PixelRNN & PixelCNN [18,19]
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Autoencoding beyond pixels using a learned 
similarity metric (10 Feb 2016)
Combining VAE with a GAN to use learned feature representations in the GAN 
discriminator as basis for the VAE reconstruction objective [20]
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Texture Networks: Feed-forward Synthesis of 
Textures and Stylized Images (10 Mar 2016)

compact feed-forward CNNs to generate multiple samples of the same texture of 
arbitrary size to transfer artistic style from a given image to any other image 
(100x speed up) [21]
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Perceptual Losses for Real-Time Style Transfer and 
Super-Resolution (27 Mar 2016)
Suggests 2 perceptual loss functions combining per-pixel loss between the 
output and ground-truth images with high-level features [22]

22



Context Encoders: Feature Learning by Inpainting 
(25 Apr 2016)
Unsupervised visual 
feature learning 
algorithm driven by 
context-based pixel 
prediction [23]
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Photo-Realistic Single Image Super-Resolution 
Using a Generative Adversarial Network (15 Sep 
2016)
superresolution generative adversarial network (SRGAN) with a perceptual 
loss function which consists of an adversarial loss and a content loss [24]
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And much, much more...

- SqueezeNet [25] and XNOR-net [26]
- Weight [27] and Layer [28] normalization
- 3D ConvNets [29]
- WaveNet [30]
- etc
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