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Abstract

Qualitative response regression models such as logistic regression are typi-
cally estimated by the maximum likelihood method. To improve its robustness,
two special cases of the M -estimation based approach for quantitative contin-
uous random variables were extended to the variant of qualitative and mixed
variables modeling. Expressions of the score functions for polytomous regression
models were derived. In according to results of the research some conclusions
and practical recommendations were given.
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Introduction

The classical statistic procedures are based on a number of assumptions which can’t
be fulfilled in practice. Under such conditions a lot of widespread statistic procedures
lose their positive qualities. For instance, the procedures, which rest on the maximum
likelihood method. But this problem can be solved by using robust estimators. The
general robust theory is developed in Huber [7] and Hampel, Ronchetti, Rousseeuw,
and Stahel [6]. Recent work describing robust statistics in detail is Maronna et al.
[10]. Generally robustness theory has been developed for the quantitative continuous
random variables modeling. Qualitative and mixed variables modeling are paid much
less attention. Several authors have studied the logistic regression model in terms of
the robustness properties of the maximum likelihood estimation (MLE) and it’s modifi-
cations. The maximum likelihood estimator attains the minimum asymptotic variance
under the model and then it is optimal, but it is very sensitive to atypical data. Obser-
vations with extreme covariates, in particular, have a large influence on the estimator,
and if they are accompanied by misclassified responses, the resulting estimates can be
seriously biased. Pregibon (see [11]) made the earliest systematic attempts to fix this
problem; he proposed methods to unmask influential observations and robust estima-
tors for the logistic model. Later robust proposals in this area include Carroll and
Pederson [2], Bianco and Yohai [1], Croux and Haesbroeck [4], and Gervini [5]. Typ-
ically, in these works binary regression models are considered. Many approaches for
binary choice estimators development were introduced as alternatives to the maximum
likelihood estimators, but they often are of semi-heuristic nature. Also note, that the
numeric character of a binary variable is assumed in many papers. Recent examples
include Victoria-Feser [13], Č́ıžek [3], and Kotlyarova and Zinde-Walsh [8]. All these
estimators differ greatly in terms of outlier resistance and efficiency under the model.
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The one of the most perspective approaches was suggested by Shurygin in [7] (see
also [9]). Shurygin’s approach based on Bayesian dot contamination of model distribu-
tion allows to get the estimators possessing a high robustness and efficiency. Originally
the estimators within Shurygin’s approach were formed only for continuous random
variables models. However the theory developed in [12, 9] can be easily extended to
the cases of scalar qualitative or count and vector mixed response models, where the
latter consists of qualitative polytomous and quantitative responses. Qualitative poly-
tomous (multinomial) response can be nominal or ordinal. In the latter case, one uses
cumulative link model, continuation ratio model, stereotype model, and others. So,
the purpose of this study is to develop a general theory of robust estimation for regres-
sion models with polytomous response and its application to the case of the nominal
response.

1 Model Specification

Assume that discrete random variable Z has a fixed number of acceptable values
{1, 2, ..., J}. Distribution of Zt under observation t is set of model probabilities

P {Zt = j|xt, α} = πj (xt, α) , t = 1, ..., N,

where xt is a vector of covariates, α is a vector of parameters.
M -estimation α̂ of vector of parameters α is obtained by solving equations system

N∑
t=1

Ψ(Zt, xt, α̂) = 0, (1)

where Ψ(Zt, xt, α̂) is a vector score function satisfying further condition for all t

J∑
j=1

πj(xt, α)Ψ(j, xt, α) = 0. (2)

2 Robust Estimation

One of the major indicators of estimator’s robustness is an influence function which
in the case under some regularity conditions takes the form

IF (Z, x, α) = M−1Ψ(Z, x, α), (3)

where

M =
N∑
t=1

J∑
j=1

Ψ(j, xt, α)
∂

∂αT
πj(xt, α).

In the Bayesian dot contamination model the distribution of Zt is defined by the
set of probabilities

P {Zt = j|xt, α, Z∗
t } = (1− ε)πj (xt, α) + εδjZ∗

t
,
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where Z∗
t is discrete random variable with fixed number of acceptable values {1, 2, ..., J}

and distribution P {Z∗
t = j|xt, α, Z∗

t } = sj(xt, α), ε is contamination level (0 < ε <
0.5), δ is Kronecker delta.

Indicator of estimation badness in Bayesian dot contamination model can be written
as functional

Ut(Ψ) =
N∑
t=1

J∑
j=1

IF (j, xt, α)IF T (j, xt, α)sj(xt, α). (4)

Corresponding optimum score function in Bayesian dot contamination model is of
the form represented

Ψ(Z, x, α) = C

[
∂

∂α
lnπZ(x, α) + β

]
πZ(x, α)

sZ(x, α)
=

= C
J∑
j=1

∂

∂α
lnπj(x, α)

[
δjZ −

π2
j (x, α)/sj(x, α)∑J

l=1 π
2
l (x, α)/sl(x, α)

]
πZ(x, α)

sZ(x, α)
, (5)

where C is nonsingular matrix, vector β = β(x, α) provides fulfillment of the condi-
tion (2).

2.1 Generalized Radical Estimator

Generalized radical estimation (GRE) corresponds to the case:

sj(x, α) = [πj(x, α)]1−λ /∆(x, α, λ),

where λ is estimator parameter (λ ≥ 0), value of ∆(xt, α, λ) either equals
J∑
l=1

[πl(xt, α)]1−λ

(used for satisfying probabilities normalizing condition) or is identity, if that condition
is not used. Note that the case of λ = 0 matches maximum likelihood estimation.

For modeling dependence of nominal response from covariates polytomous logistic
regression is often used. Corresponding probabilities are of the form

πj(xt, α) = exp [Φ(xt)αj)]

{
1 +

J−1∑
k=1

exp [Φ(xt)αk]

}−1

, (6)

where Φ(xt) is a vector of regressors, αj is a subvector of α (subvectors αj, j =
1, 2, ..., J − 1, are not intersected), αJ is a null vector.

Generalized radical estimation of subvector αj in polytomous logistic regression
model is defined by the score function

Ψj(Zt, xt, α) =

δjZt −
[πj(xt, α)]1+λ

J∑
l=1

[πj(xt, α)]1+λ

 [πZt(xt, α)]λ∆(xt, α, λ)ΦT (xt). (7)
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2.2 Conditionally Optimal Estimator

In the set of robust estimators also can be used estimation with the optimum score
function in Bayesian dot contamination model given by

Ψ(Z, x, α) = C

[
∂

∂α
lnπZ(x, α) + β

]
1

1 +
k2

πZ(x, α)

,

where k2 is estimator parameter and C, β are the same as in (5).
To obtain conditionally optimal estimator, assume that distribution of Z∗

t is given
by

sj(xt, α) = πj(xt, α) + k2.

Hence, taking into account (6) the score function for conditional optimal estimation
in polytomous logistic regression model is of the folowing form

Ψj(Zt, xt, α) =

δjZt −

π2
j (xt, α)

πj(xt, α) + k2

J∑
l=1

π2
l (xt, α)

πl(xt, α) + k2


1

1 +
k2

πZt(xt, α)

ΦT (xt). (8)

3 Experimental Research

In practice, there may be several solutions of equation system (1). Thus some
methods of selection solutions are should to be used. Also it is necessary during solving
to distinguish between consistent and inconsistent solutions and leave the latter out.

As a check of working capacity of proposed approaches was performed experimental
research of generalized radical estimation of polytomous logistic regression model with
nominal response having three levels. Maximum likelihood and robust estimators were
compared under following values of estimators’ parameters and model’s parameters
α. Vector of regressors is of the form [1, x, x2]. True values of model’s parameters
are α1 = [−8, 2, 1] and α2 = [−5, 4, 1]. The number of observations is 1000, the
values of x are uniformly distributed on [−10, 10]. The response has contaminated
distribution with level ε = 0.05. Contamination also has uniform distribution. And
the parameter of the generalized radical estimator has the value λ = 1 (this case is
equivalent to conditionally optimal estimator with parameter k2 = ∞) The results
of MLE are α̂1 = [−3.45433123701182, 0.149008965849041, 0.214074248534943] and
α̂2 = [−1.3719459314693, 0.907693561128312, 0.149007714343864]. And corresponding
results of GRE are α̂1 = [−11.8998482654318,−1.09199066567912, 0.432142103840774]
and α̂2 = [−7.95057570361495, 7.29031267939047, 1.15240358346135].

Figure 1 provide us MLE-estimated probabilities dependence on the covariates.
True probabilities are presented by black lines and estimated probabilities by grey.
Solid lines correspond to the value of the response j = 1, dashed lines to the value
j = 3 and dash-dot lines to the value j = 2.
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Figure 1: Probabilities estimated by MLE

Figure 2: Probabilities estimated by GRE
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Figure 2 provide us GRE-estimated probabilities dependence on the covariates.
Designations for this figure are the same as for Figure 1.

As the results of the study, robust estimate is less affected by contamination than
the MLE estimate. Although robust estimation of parameters quite substantially differ
from the true values, dependences of the estimated probabilities are close enough to
the true. Hence it is obvious that generalized radical estimator shows more accurate
results of probabilities estimation than maximum likelihood estimator.

Conclusions

Due to the results of the research we conclude that:

• the proposed robust method is effective when level of contamination is not too
high;

• it is often necessary to use more robust estimator for obtaining good results;

• high quality of estimation requires a great number of observations;

• whereas methods of estimation are sensitive to initial point it is essential to
develop special techniques for obtaining good initial approximation.
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