Angiodysplasia Detection and Localization Using Deep Convolutional Neural Networks

Abstract

Accurate detection and localization for angiodysplasia lesions is an important problem in early stage diagnostics of gastrointestinal bleeding and anemia. Gold standard for angiodysplasia detection and localization is performed using wireless capsule endoscopy. This pill-like device is able to produce thousand of high enough resolution images during one passage through gastrointestinal tract. In this paper we present our solution for MICCAI 2017 Endoscopic Vision SubChallenge: Angiodysplasia Detection and Localization its further improvements over the state-of-the-art results using several deep neural network architectures. It addresses the binary segmentation problem, where every pixel in an image is labeled as an angiodysplasia lesions or background. Then, we analyze connected components of each predicted mask. Based on the analysis we developed a classifier that predict angiodysplasia lesions (binary variable) and a detector for their localization (center of a component). In this setting, our approach demonstrates one of the top results in every task subcategory for angiodysplasia detection and localization thereby providing state-of-the-art performance for these problems. The source code for our solution is made publicly available at https://github.com/ternaus/angiodysplasia-segmentation.

Publication
2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA)